STUDY CASE:
BX-160 RING GASKET
ON 13-5/8” 5M API 16A HUB CONNECTION
BY USING ABAQUS 6.10-1

YUDHI SOMALI
8th November 2016

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
BACKGROUND

It was known that 6BX flange / 16BX hub has a face-to-face connection which (intuitively) leaves no visible gap. However, API 6A mention “face-to-face contact is not necessary for proper function of type 6BX flanges” [4] Clause 10.1.2.3.1

The simulation was done on hub instead of flange connection to verify if the same idea are applicable on hub connection.

Hub connection make-up process shall be simulated by using finite element software Abaqus/CAE 6.10-1 to see if there’s any gap left after make-up connection.

The simulation study shall cover:

1. Sealing capability assurance that was formed after ring gasket compressed.
2. Validation of any gap between hub bodies once all studs being torque as per recommended value.

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
TRANSFER LOAD

4 (four) pieces of Ø2-1/4” stud nut being torque up in accordance with API 6A 20th Edition standard.

All tension load on stud shall be fully transferred through a series of clamp-hub in order to compress the ring gasket.

Initial gap between hub bodies was measured 113mil [3mm] based on layout prior make-up.

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
The model being generated by using axi-symmetric feature.

3 (three) bodies were to simulate the make-up process:

a. 13-5/8” 5M Hub Top Body
 Material: Low Alloy Steel 4130 75k yield
 Constraint: -
 Connection: contact with gasket taper OD side in initial
 Load: Pressure at hub OD taper surface

b. BX-160 Ring Gasket
 Material: Austenitic Stainless Steel 316 36k yield
 Constraint: restrained at Z axis with no rotation against X & Y axis
 Connection: contact at gasket taper OD side
 with both hub taper groove profile in initial

c. 13-5/8” 5M Hub Bottom Body
 Material: Low Alloy Steel 4130 75k yield
 Constraint: restrained at Y axis with no rotation against X & Z axis
 Connection: contact with gasket in initial
 Load: Pressure at hub OD taper surface
MATERIAL

- Both material being given plastic parameter instead of elastic to accommodate plastic deformation possibility during simulation.
- Plastic parameter data on each material (true stress vs plastic strain) was generated in accordance with ASME method [1].

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
LOADING

- Loading shall be given in terms of pressure at the hub taper profile. Pressure load was given with consideration all tension load from stud nut shall be fully transferred through clamp up to the hub taper profile.

Input Parameter

- **Stud tension** [lbf] 186,758
- **Stud quantity** [-] 4
- **Hub taper area** [in²] 46.38

Pressure load = \(\frac{186,758 \times 4}{46.38 \times 2} \approx 8,000 \) [PSI]

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
CONTACT PRESSURE

• Sealing capability assurance being verified through contact pressure that formed due to ring gasket compression. The sealing situation is occur when the contact pressure formed is minimum 3 times of the test / working pressure \(^{[3]}\).

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/ service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
DISPLACEMENT

- Visible gap being verified from magnitude of displacement at the top hub body to how far it will go once gasket being compressed.
- It was found the hub top body travel maximum 70mil against initial position which indicate the initial gap (113mil) was not closed even when gasket has been compressed.

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
CONCLUSION

- Based on simulation, 16BX hub still leaves visible gap though it is set with recommended torque value.
- Similar idea with 6BX flange connection also applicable where “face-to-face contact is not necessary for proper functioning of type 16BX hub”.
- This idea might reflect the real situation where 16BX hub / 6BX flange connections were installed with brand new ring gasket.

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.
REFERENCE

1. ASME BPVC Section VIII, Division 2, 2013 Edition, Annex 3D

6. www.azom.com

These information’s are solely provided for educational and/or discussion purposes and should not be interpreted as a recommendation for a specific treatment plan, course of action or product/ service. Use of any of this information does not replace consultations with individuals qualified in these respective fields.